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Abstract 
Space-based remote sensing systems continue to provide valuable long- and short-term data sources for Earth 
science research and related applications.  A critical component in such a system is the data archive which 
stores the data collected by the remote sensors (perhaps following a value-added processing step), and then 
makes this data available to scientists and other users.  Looking ten to twenty years into the future, it is likely 
that the current practice of manually optimizing the operations of archives will not suffice as systems become 
increasingly complex and data users become increasingly diverse.  This is particularly true for NASA’s Earth 
Science Enterprise as it embarks on an initiative to increase the use of Earth science data for a variety of non-
research applications, many of which have large user communities and stringent near-real-time requirements.  
By adding intelligence to the data archive, it may be possible to substantially improve the level of service 
provided by the archive while reducing costs by better anticipating user data requests and making more 
effective use of available resources.  We expect a variety of benefits to users, the most important of which is 
reduced latency of product delivery for time-sensitive applications.   
 
This paper is one of a series of studies focusing on various aspects of an intelligent archive (IA).  This work is 
sponsored by NASA’s Intelligent Systems Project within the Computing, Information and Communications 
Technology (CICT) Program.  A conceptual study of intelligent archives of the future is underway1, and the 
work reported here is intended to contribute to that effort.  Here, we will focus on issues concerned with 
optimizing performance.   
 
This paper begins (§1) by clearly defining the problems that will face data archives for remote sensing 
systems.  On the one hand, sensors are increasing in capability, requiring corresponding increases in 
bandwidth, storage capacity, tasking strategies, and algorithmic and processing sophistication and complexity.  
On the other hand, the user community and associated applications consuming this data – and their 
requirements – will continue to expand.  Reduced latency (perhaps as low as tens of minutes) is only the most 
visible of a host of requirements for improved efficiency, functionality, and product quality.  We then discuss, 
at a functional level, how intelligence in the archive might address these problems, and illustrate this with an 
example scenario based on fires in the Western United States. 
 
Next (§2), we examine the applicability of a variety of candidate technologies to these requirements.  In 
addition to approaches involving machine learning, optimization, and scheduling, we discuss a novel 
approach coming from researchers in control theory.  We show how Model Predictive Control (MPC) might 
serve as a conceptual unifier in developing a systems-level integrated solution framework.  We then discuss 
(§3) seven significant technical challenges facing an intelligent archive supporting remote sensing systems.  
Finally, we briefly summarize our conclusions and recommendations (§4).  An appendix provides additional 
background on MPC for the interested reader. 
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1.  PROBLEM STATEMENT 

The following four subsections respectively address the role of the archive in the overall system architecture; 
the major drivers that motivate the inclusion of intelligence in the data archive; a brief characterization of the 
term intelligence as applied to an archive; and an example scenario that highlights the functional capabilities of 
an intelligent archive and provides a glimpse into its associated concept of operations.

THE ROLE OF THE INTELLIGENT ARCHIVE 

To provide context for the ensuing discussion, we begin with a brief overview of typical remote sensing 
programs supported by a future intelligent archive, and the role the archive plays in them.  The intelligent 
archive is likely to be a major piece of an overall end-to-end knowledge-building system, which would no 
longer be confined to a single location.  Rather it is a distributed entity comprising components fulfilling a 
variety of functions (principally data understanding, management and persistence) at potentially dispersed 
locations, with efficient interfaces to other pieces of the end-to-end system such as intelligent sensors and 
processing systems.  The distributed nature of this system, together with the need for efficiency in intra-
system interactions, requires robust resource management. 
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Figure 1. Context diagram for intelligent archive. 

 
The resource management domains within this system are depicted along with conceptual data flows in Fig. 2.  
First (1), there are the physical and geophysical processes that are the target, or object, of collection.  While these do 
not constitute a resource management domain themselves, they will be shown to have a potentially powerful 
effect on resource management decisions elsewhere in the end-to-end system.  Second (2), there are the data 
collectors – that is, the collection vehicles and sensors that remotely and digitally sample the signals and down-
link the data to ground-based receiving stations.  Third (3), there are the archival facilities, which are the 
principal focus of this paper.  Fourth (4), there are the data producers (including both production processing 
and science processing facilities) that process the data into estimates of geophysical parameters and higher-
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level data products.  And fifth (5), there are the users and their applications that request and use the data 
stored in and provided by the archive.  These resource management domains are functionally but not 
necessarily physically separate:  in many cases some production processing may be done at the archival facility 
to save cost; likewise, the users may consist of other data collectors or data producers.  Conversely, a given 
resource management domain may be widely distributed. 
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Figure 2.  Resource management domains in the end-to-end system, with conceptual data flows. 

 
Management of collection tasking for a sensor on an orbiting vehicle is typically the responsibility of an 
instrument team.  Many/most sensors are currently down-staring and not pointable; the only available 
commands are on- and off-times; and when on, the sensor collects everything in its field of view.  A few 
other sensors (and their proportion may increase over time) are pointable, so that more detailed collection 
plans are required on a pass-by-pass basis.  In present-day systems, the data generated by the sensor is stored 
in on-board buffers for periodic (once-per-rev) downlink (although real-time X-band broadcasts may also be 
supported).  In the typical case, the data is sent to a facility for Level-0 processing, and then shipped directly 
to the archive.  This latency (assuming deferred downlink together with Level-0 processing) may be as much 
as 90 minutes.  Future systems are likely to have more processing capability and even some archive capability, 
re-emphasizing the idea that these resource management domains are functionally determined.  However, 
space-based resources are inherently more limited due to weight, power and radiation; thus, resource 
management domains can be strongly influenced by physical location. 
 
Once the data have arrived at an archive facility, some production may follow.  Depending on requirements, 
this may include routine processing into higher level products (Level 1-4) and creation of metadata.  Data 
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may be shipped directly to customers (if low latency is important), or a more leisurely production and delivery 
schedule may be applied.  In present-day systems, many customers have standing orders, and latencies on the 
order of two weeks are often acceptable.  Further, delivery of the product on tape cassette is frequently 
adequate, thereby reducing demands on network bandwidth.  However, future systems are likely to require 
lower latency as more users exploit the data as a decision support tool. 
 
In addition to standing requests, users make ad hoc requests for archived data and request specialized 
processing (or re-processing) of that data.  These requests are often event-driven.  For example, the eruption 
of a volcano may trigger heavy demand for data from many sensors at that location over a long period of 
time – up to several years.  Other request patterns exhibit temporal periodicity related to the academic year 
and research intensity.  These ad hoc requests add to the total load on the archive, and can become a problem 
if a large number of requests cluster over a short period of time. 
 
Another type of request is focused on very recent collections, and low latency is an important requirement.  
Perhaps 10% of current resources are devoted to these types of near-real-time applications, and this 
percentage is expected to increase.  For these requests, which may be standing or ad hoc requests, the archive 
must expedite product delivery independent of its archival functions.  In this capacity, it acts as a value-added 
store-and-forward buffer, generating specialized products which are rapidly relayed to the end customer, 
typically by WAN.  Often, in the current environment, the production sequence for these products can be 
predefined and triggered at ingest.  In the future, it may be necessary to select the appropriate processing flow 
dynamically, perhaps adjusting it in mid-stream based on content-processing that searches for triggering 
events in the data itself. 
 
The significant resources within the archive include ingest communications equipment (and associated 
bandwidth); the large tape archive (including multiple drives and tape management robotics); data processing 
equipment (high performance processors for production); a high-performance disk cache for staging data 
between tape, production, and ingest/export; and interfaces to WANs and the Internet for product delivery 
as well as for connectivity to other archives and processing facilities.  This last item is important, since some 
concepts of operations for future architectures include the ability to distribute processing and storage loads 
over multiple sites and facilities.  In this scenario, one option available to an archive (for example, to satisfy a 
particular request) might be to ship local data to a remote facility where it is fused with data from other 
sources, specialized processing performed, and data delivered.  Alternatively, if production requires access to 
data held at another facility, this data may first be staged or shipped to the archive prior to processing.  These 
and other production scenarios are actively under consideration for future implementation.  One area of 
possible optimization is for the archive itself dynamically to select among these options on a case-by-case 
basis depending on current or predicted system state and loading. 
 
The intelligent archive itself does not include processing as an integral function, though many requested 
products require further (on-demand) processing.  However, this processing may best be considered as a 
service which the archive requests or supports, rather than a service which it directly provides.  In this view, the 
archive serves the role of intelligent broker and coordinator, orchestrating the activities of service providers 
to achieve a complex product (the result, for example, of data from multiple sources that has been subject to 
a complex and possibly conditionally branching processing flow).  In the discussion which follows, we clearly 
emphasize the coordination role of the archive as an efficient requestor of data and services.  However, the 
intelligence to optimize this coordination and scheduling role must include state and dynamical models of the 
processing services being requested as well as some ability to control and task them.  In actual practice, if the 
processing resources are collocated with the archive, there is a tendency to blur the distinction between 
requesting a service, on the one hand, and directly tasking an owned resource, on the other.  This issue, which 
is partly architectural and partly administrative, lies beyond the scope of this paper.  Our focus will be on 
improved functionality, adaptability, and performance (latency, bandwidth, priority, value) achievable by 
adding various sorts of intelligence to what is, now, a fairly rigid and inflexible archival capability. 
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DRIVERS AND MOTIVATION 

With the prior section as background, we can now discuss in greater detail the drivers that lie behind the 
interest in adding intelligence to the data archive.  We shall briefly discuss nine such factors. 
 
real-time or near-real-time applications:  The percentage of users demanding low-latency product delivery 

is increasing.  These include, for example, emergency response organizations  that rapidly address or 
contain crisis situations.  These customers may need tailored data products  –  that is, products that are 
the result of specially formulated scientific modeling algorithms and that must meet preexisting interface 
requirements –  to sense the occurrence, location, extent, and severity of the event.  Because of its 
position as the first recipient of raw data, and because of the proximity to high performance computing 
equipment, the archive is an attractive candidate for providing such a service.  The problem, however, is 
that the need for this service is dynamic and conditional.  This means that the archive must be flexible 
and adaptive, with the ability to adjust or coordinate processing flows and resources dynamically in 
response to stochastic events.  Further, this capability must be provided with minimal disruption to 
ongoing standard production cycles and product delivery.  Examples of such applications include 
precision weather forecasting, precision agriculture, and natural disaster management (including forest 
fires and flooding). 

 
production disruptions:  Considerable effort in current production management is devoted to responding 

to breakage or errors in the data and processing flow.  For example, if a collection of data sets is ordered 
from another source, the application may require the complete set to begin production: partial deliveries 
must be handled intelligently depending on whether items were dropped due to errors or because the 
requested data were not available, and depending on whether or not the data are available from another 
source.  Similarly, internal data errors may trigger a processing halt or abort, perhaps after significant 
processing has occurred.  While intelligence, per se, may not be adequate to address these error- and 
quality-related disturbances, intelligence should have models for the underlying rates, and take them into 
account in considering job scheduling and distributed job execution strategies. 

 
tip-offs, cuing, and rapid retasking:  Future concepts of operation demand near-real-time retasking in 

response to events or circumstances detected by specialized content-based processing in the archive 
(that is, the event detector cues the collector).  Here, we imagine an ongoing surveillance function, 
perhaps itself initiated based on increased likelihood of occurrence of an event with scientific or societal 
importance.  As soon as the event is detected (e.g., as the result of event-recognition algorithms executed 
in surveillance mode for geographic regions known to be at high-risk), it is useful to rapidly obtain 
additional high resolution sensor data at the event location.  This cueing must be low-latency, and hence 
must by-pass ordinary organizational review and approval processes.  As should be apparent, this 
retasking will, itself, result in additional loads at the archive as the newly tasked data arrives for 
specialized processing and low-latency product delivery.  This capability results in a stochastically driven 
feedback loop, with the associated complexity and potential for pathologies. 

 
virtual products (on-demand processing):  An archival capability currently under consideration is virtual 

products, created through on-demand processing.  In this strategy, rather than process all derived products 
at ingest in order to store the results for future retrieval, the archive will store only raw data, performing 
the higher-level processing once the product itself has been specifically requested by a user.  In this case, 
the impact on the archive is more dynamic and unpredictable loading, at least when compared to the 
very rigid and predictable loading typical of current operations.  This capability requires some degree of 
optimization and data staging by the archive.  Rather than simply rely on a preset processing schedule, it 
must dynamically examine the current and predicted loading, stage data needed for the product, and 
optimally schedule a potentially dynamic set of resources among competing active requests. 
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content-based processing, metadata, and retrieval:  The archive is ideally placed for characterization of 

ingested data, e.g. for the purposes of quality assessment or the production of  metadata for use in 
content-based retrieval.  The decision of whether and when to perform such processing, the feedback 
implications of doing so, and the problem of dynamically balancing the added processing load against 
other requirements is a complex optimization problem.  In addition, the event-detection algorithms may 
benefit from machine learning approaches to pattern recognition.  This reflects the desire to replace 
computationally expensive, model-based scientific codes by much faster non-model-based (machine-
learning) algorithms derived from training sets for the purposes of data management and applications 
decision support (if not for scientific research purposes). 

 
efficient processing of event-based loading spikes and bursts:  The occurrence of certain types of 

events, such as volcanic eruptions or earthquakes, can trigger heavy loads at the archive as the result of 
requests for historical data near the event location.  The loading resulting from these “spikes” has the 
potential to disrupt normal processing flows.  By understanding the characteristics of these request 
patterns, and/or by predicting them (say, by anticipating the occurrence of the event itself), the loading 
profile can perhaps be somewhat leveled, with the result of less disruption and reduced latency of the 
delivered products.  Similarly, requests for data can potentially be grouped for efficiency.  Again, 
intelligence – in the form of predictive models of event occurrence and patterns in the resulting loading 
– may provide a key piece in addressing this type of disruption. 

 
distributed processing and storage resources:  A trend with the potential to revolutionize high 

performance processing is the notion of “any time, any where” computing.  In this model, the user is 
not aware of where, within highly interconnected web or network of computing and storage facilities, his 
job will actually execute or his data will be stored – a notion that, in this context, is sometimes called the 
virtual archive.  In support of this capability, an internet-scale operating system moves the job or data to the 
best location based on various performance, reliability, and cost factors2.  In the context of our problem, 
the archive might conceivably have access to a variety of remote processing and/or storage facilities, and 
itself might be subject to additional loading as remote jobs are dynamically assigned to its own resources.  
As one example, when a product requires as input data from three separate sensors, and when that data 
is geographically distributed across multiple archival locations, the problem of staging the data to the 
place where the processing will occur (at the archive, or at some other remote facility) is demanding.  To 
solve it will require system-wide models of current loading and latencies, and a distributed optimization 
approach (e.g., based on auction or adaptive control approaches).  Such capabilities require modeling and 
intelligent optimization that go well beyond current practice. 

 
use of priority and value in processing, cache, and request queue management:  Concurrent demand 

for constrained resources is a classic problem in optimization.  The system must adjust the order of 
processing both to maximize throughput and to increase value correlated to latency.  In addition, it is 
possible that some users have (say, by policy, or through funding) higher priority than others.  In this 
context, the archive may be expected to routinely adjust its processing flows and resource allocation to 
optimize total value. 

 
increasing system complexity and labor costs:  While the cost of computing, storage, and 

communications capacity continues to decline at a rapid rate, we cannot conclude that archives of the 
future will at some point be free.  The complexity of complete archive systems continues to increase, 
driving up the cost of personnel to manage archive operations and potentially leading to a point where 
problem solution is so complicated and time consuming that data availability goals suffer.  Greater 
intelligence in the archive could help contain operations costs and increase the level of service provided. 
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CHARACTERISTICS OF AN INTELLIGENT DATA ARCHIVE 

The purpose of this section is to summarize and briefly expand on the types of functionality that characterize 
an Intelligent Archive.  We have identified six areas, or types of behavior, that together constitute our notion 
of intelligence in this context. 
 
OPTIMIZATION OF HIGH PERFORMANCE DISK CACHE 

The difference in retrieval latency for data on disk, as compared to data in the robotic tape server, is currently 
about 5 orders of magnitude:  from 10-3 seconds for disk access, to 102 seconds for tape access.  Often, 
improving latency in product delivery hinges almost entirely on whether the desired data is already on disk.  A 
similar issue arises when some portion of the required data resides at a remote facility, and must be retrieved 
by the local archive to support product formation.  If the data necessary for production (and often multiple 
sensor types and data sets are involved) have already been staged to disk, a large part of the latency budget is 
eliminated.  An intelligent archive, then, is one that reasons about when, and under what conditions, to move 
data sets from the tape archive to disk, and when (similarly) to delete a data set from disk because it is unlikely 
to be requested, or to make room for other data sets. 
 
Hierarchical storage management systems currently attempt to optimize file access based on observed usage 
heuristics, such as recency or frequency of usage, and cost functions related primarily to the size of files, often 
in combination3.  However, most such algorithms do not make use of any knowledge about the file contents.  
On the other hand, analysis and modeling of past usage patterns and data requests in response to known 
types of event is one possible future strategy.  Here, the archive knows (based, for example, on data mining of 
historical request log data) that certain kinds of event will (with high probability) result in identifiable and 
predictable data request and usage patterns for certain kinds of data.  When the event is predicted – perhaps 
using predictive geophysical models – or detected, the IA can begin the process of pre-staging the data to disk 
– both from its own tape servers and also from distributed locations.  The result is that, when the anticipated 
requests do arrive, the data to service them will already have been placed in the disk cache, thereby 
accelerating processing and delivery. 
 
OPTIMIZED MANAGEMENT OF REQUEST QUEUES 

There are a variety of optimization strategies based on analysis of the existing, or anticipated, request queue.  
For example, it might be valuable to postpone production and delivery to one customer for a bit, knowing (or 
predicting) the occurrence of other similar requests, and thereby permitting broadcast product distribution 
rather than multiple sequential individual deliveries.  The result is overall throughput increase at the expense 
of small added latency to one customer. 
 
It may also be that analysis of the processing or input data required to service one request partially overlaps 
that required for another. By grouping these requests and scheduling a single job that produces both 
products, it may be possible to reduce processing time and resource utilization.  The ability to perform such 
optimizations requires explicit models for the required inputs and processing, and the ability to recognize 
partial redundancy.  The algorithms to perform such analysis already exist (developed, in part, to support 
efficient compilers for parallel processing)4. 
 
In addition to latency and throughput per se, it is possible to optimize based on customer priority, and to 
recognize that the value of certain products decays with time.  In order to “book” value for these requests, 
they must be moved to the head of the queue.  And, since their value is evanescent, it likewise makes sense to 
purge them from disk at an early opportunity.  For other requests, low latency is not an issue.  By recognizing 
this, the archive can stage or postpone production, packing these jobs efficiently around high priority, low 
latency requests. 
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THE IA AS AN EFFICIENT REQUESTOR 

The IA must be conceived as part of a connected network of storage and processing facilities, linked by an 
internet-scale operating system that allows access to remote resources.  This considerably broadens the range of 
possible strategies available to the IA for servicing requests.  In the simplest case, only locally available data 
and resources would be employed.  At the complex end of the spectrum, the IA might choose to schedule a 
complex interdependent set of jobs and data transfers at and among a variety of remote sites.  Here we meet 
again the notion of the IA as an efficient requestor, optimally coordinating the actions of a variety of service 
providers to achieve a complex result. 
 
One critical component for solving this type of problem is a good set of models for the processing steps and 
the resources they consume:  bandwidth, processor/memory, latency (= FLOPs), etc.  Another is a 
distributed mechanism (e.g., auction algorithm) for negotiating an acceptable and/or optimized solution 
among the various service providers.  (Some e-Business applications might provide an initial capability of this 
sort off-the-shelf.)  Finally, the end result as perceived by the customer must be considered – that is, the 
optimization and/or feasibility constraints facing the IA as it balances the overall value-to-the-customer of 
services delivered. 
 
PREDICTIVE AND ADAPTIVE MODELS 

All of the characteristics of an IA so far discussed share a common feature that deserves to be broken out for 
separate discussion and emphasis:  the need for reliable predictive models of events and processes.  Here is a 
partial list of important models needed to support the types of desired capability. 
 

• performance models associated with storage, networks, and processing 
• models for data sets (internal structure, size, location, dependencies) 
• models for job execution streams, including internal and external dependencies 
• models for availability and performance of remote facilities and service providers 
• models and stochastics for geophysical event occurrence (temporal, geographic) 
• correlations among detectable events (tip-off, cuing) 
• correlations of user request characteristics to the occurrence of geophysical events, to annual or 

diurnal cycles, or to each other 
• orbital and sensor models for target accessibility 
• models for product value and priority (e.g., value as a function of latency) 
• models of feedback loop dynamics and pathologies resulting from event detection and sensor 

retasking (ephemeris, accessibility, downlinks, etc.) 
• models embedded in algorithms for pattern recognition and classification (e.g. results of machine 

learning) 
 
A state-of-the-art enterprise not only creates and utilizes such models – it also continually validates, revises, 
updates and adapts them based on actual observations from operations.  The models are routinely compared 
against observations and system state estimates; and, if necessary, they are revised so as to ensure continued 
predictive accuracy.  We refer to this process as adaptive modeling (not to be confused with adaptive behavior in 
response to event occurrence, discussed further below).  An infrastructure to support state estimation for this 
purpose should be provided as part of the system design.   The need for on-going validation and adaptation 
of supporting models, which is well-understood within the control theoretic community, is essential for an 
intelligent archive to reach its full potential.
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EXPLICIT USE OF CONTENT-BASED METADATA 

In resource optimization, an intelligent archive must be aware of the semantic content of the individual data 
sets that pass through it. There is often a strong correlation between the nature of the geophysical events 
recorded by (that is, contained within) a data set, on the one hand, and the frequency and type of use that will 
be made of that data set by the user community, on the other hand.  We believe that an IA will routinely 
extract such content as part of ingest processing, produce the associated metadata, and use it to dynamically 
trigger adaptive behaviors:  sensor retasking, selection among alternative data processing flows, identification 
of events correlated to known request and usage patterns, etc.  Machine learning techniques may be able to 
provide computationally efficient pattern recognition and classification algorithms for this purpose. 
 
This metadata may also serve as input to data mining algorithms intended to extract usage patterns and 
correlations from request logs.  That is, it may be possible automatically to identify significant event-to-usage 
correlations, provided that the data mining algorithms have some knowledge of event characteristics via the 
metadata. 
 
ADAPTIVE BEHAVIOR 

Here, we refer to the ability of the archive to dynamically and autonomously adjust its behavior based upon 
the occurrence of events.  The events may be geophysical; they may reflect changes in usage request patterns; 
they may reflect changes in the status of the local and remote resources available to the IA; or they may 
reflect changes in priority, value or latency requirements associated with products. 
If optimization techniques are employed, they will necessarily be temporally local, based on predictions or 
estimates of event stochastics over some time horizon.  As time moves forward, what had been a prediction 
(or estimate) now becomes known in fact, and the additional information can be used to re-optimize over a 
suitably extended new horizon.  Such an approach, known as rolling horizon re-optimization, permits smooth 
transitions across event boundaries, since the optimal response is continually reintegrated over largely 
overlapping temporal windows.  Thus, the optimized solutions adapt in a graceful manner as additional 
information becomes available and as statistical confidence improves. 
 

EXAMPLE USAGE SCENARIO:  FIRES IN THE WESTERN US 

The following discussion illustrates several of the important themes in the preceding discussion within the 
context of a hypothetical scenario:  support to Federal and State fire fighting and crisis management services 
responding to large fires in the Western United States. 
 
Pre-season activity:  A number of science-based predictive models are available to identify regions where 

fires are most likely to occur.  These include: weather and climate models (rainfall, humidity, 
temperature); forecasts for vegetative growth; and forecasts for fire occurrence, density, and severity.  
Other models can be coupled with these to assess societal risk (e.g., housing near high-risk areas), and 
flood risk resulting from run-off from deforested areas.  The IA has several roles and value-added 
functions during this period.  First, it can collect historical data from disparate sources to support these 
models, pre-staging it well in advance of production to reduce user-perceived latency.  Second, it can 
serve as an efficient requestor to coordinate production using these models, either applying its own 
resources, or negotiating with linked but distributed facilities, and optimally staging input data sources to 
them in a timely manner.  Third, assuming that this process has been going on for several years, it can 
perform data mining on content-based metadata seeking past examples both to confirm/validate model 
predictions as well as to suggest possible correlations that might otherwise escape human attention.  And 
fourth, it can serve as the mechanism for tasking/retasking high resolution sensors in areas perceived to 
be at greatest risk, thereby increasing model fidelity and forecast accuracy.  The archive can become a 
value-added tool in the scientific modeling and forecasting process, simplifying the process of 
assembling and staging data, extracting knowledge through sophisticated exploitation algorithms, 
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searching for undiscovered patterns and correlations, and optimally utilizing other related computational 
and sensor resources. 

 
During fire season – surveillance:  Once fire season has begun, the IA begins a continuing process of 

event detection using content-based pattern recognition processing of ingested sensor data.  This, in 
conjunction with other event detection capabilities, becomes the initial alert that a fire may be underway.  
This process of surveillance and event detection continues throughout the fire season, and is captured in 
the form of content-based metadata for later analysis.  We envision use of computationally efficient 
machine-learning-based pattern recognition algorithms to perform the initial scan.  When possible 
events occur, more sophisticated science-based models are automatically invoked (to reduce false 
positive errors).  Inputs from precision weather and vegetation forecasts are used to update risk models, 
and the IA maintains data from areas at greatest risk in high-speed storage. 

 
Responding to a fire event:  When detection of an incipient (i.e., nascent) fire event occurs, the IA can 

immediately task high resolution sensors to collect more detailed localized information.  It invokes very 
low-latency data delivery paths to concerned organizations.  Sensor constellation accessibility and diurnal 
periodicities are used to optimize collection and product delivery schedules.  Models are invoked 
(perhaps at the archive itself) to assess severity and forecast temporal and geographic extent.  This data 
can then be fused (perhaps at the archive itself) with other data sources to support GIS analysis and 
display.  Flood analysis can also be performed, and data pre-staged for regions downstream of the fire 
area that may be at risk. 

 
As the fire event proceeds:  Under the assumption that the initial detection becomes a major fire, the IA 

can become the “data hub” for distributing low-latency, high-value data to a variety of Federal agencies.  
Daily progress summaries, fusing data from many sources, can be produced at the archive and 
disseminated in near-real-time.  When more than one fire is active, the archive can supply data needed to 
assess relative severity and direct limited resources to areas that are most at risk.  It can perform 
metadata-based data mining to identify similar past events, and use this to update models and validate 
forecasts.  It can invoke models to monitor progress of Burned Area Emergency Rehabilitation (BAER) 
efforts, and it can use flood models to provide alerts for down-stream at-risk areas.  It can monitor and 
predict smoke plume, pushing results to public health agencies.  In short, the archive becomes a valuable 
resource for executing heavy-lifting models, staging and fusing data from multiple sources, providing 
value-added products to analysis and display systems at customer sites, continuing to provide event 
detect, alerts, and retasking services, and in general serving as the hub of a computationally complex and 
data-heavy analysis process. 

 
Concurrent activities:  In the meantime, independent of the fire scenario itself, the IA continues to perform 

its other duties and responsibilities.  Intelligent planning and scheduling algorithms predict system load 
increases resulting from support to fire-related activities, and adaptively optimize ongoing production 
schedules.  Data mining algorithms are invoked to analyze past events to predict system loading and 
latencies.  This analysis serves as the basis for automatic negotiated work distribution across other linked 
processing and storage facilities.  Feedback loop analysis and prediction is invoked to detect and avoid 
incipient pathologies (live-lock, dead-lock, hysteresis, chattering).  High priority customers from other 
disciplines continue to receive high-quality, low-latency service despite increased system loading.  
Predictive models are routinely and automatically compared against observations for purposes of 
validation and/or adaptation.  Management is presented with accurate, complete reports of current 
status, production schedules, predicted loading, disk cache policies, and assessment of value to end 
users.  Worst-case what-if scenarios are extrapolated from current state, and optimized playbook entries 
prepared in advance for future selection and execution. 
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2.  CANDIDATE TECHNOLOGIES 

The following four subsections respectively address:  technologies for managing the high performance disk 
cache, a key component in reducing latency of product delivery;  technologies addressing problems in open-
loop planning and scheduling of processing resources, including rolling horizon and mixed-initiative 
approaches;  technologies supporting machine learning, pattern recognition, and automatic model generation;  
and finally, a brief discussion of Model Predictive Control and the associated control theoretic formulation of the 
problem and capabilities described in the prior section. 
 

DISK CACHE MANAGEMENT 

Access to data sets, both as input to production and for delivery to customers, is a source of latency.  If the 
required data is already in the high performance disk cache, then this latency is greatly reduced when 
compared to the latency involved in robotic loading of cassettes, followed by a linear search along the tape to 
the point where the data resides, followed by a comparatively low-bandwidth data transfer.  Thus, 
management of the contents of the disk cache is potentially a source for significant performance 
improvement (where performance here means primarily reduced latency in product formation and delivery).  
Even if all data were maintained on disk or memory in the future, the same logic can be applied to the 
management of local caches used to stage data from remote locations (esp., in an internet operating system 
scenario) for the purpose of reducing the cost or perceived latency associated with data retrieval.   
 
A long-standing and successful simple rule for managing a cache is LRU (least recently used).  When the 
system requests a data set to be loaded to the cache, the cache itself decides which data set to delete to make 
room for the new entry, and the rule it uses is based on maintaining a time history of usage:  the data set 
whose most recent usage is the oldest is deleted first, and the process continues until enough room is made 
for the newcomer. 
 
The difficulty with the rule is that it does not take into account such matters as the content of the data set, its 
potential relationship to other data (say, for formation of complex products), the fact that it may have been 
staged in anticipation of usage based on predictive models, and the fact that once a data set has been used, its 
value may almost immediately deteriorate (e.g., highly perishable collection value).  In other words, the true 
worth (that is, estimated value) of any particular possible loading of the cache is, in reality, a complex function 
of many factors, only one of which is customer interest as evidenced by recent usage. 
 
In the discussion on Model Predictive Control below, we will suggest that cache management be integrated 
into a broader optimization approach that takes into account a variety of loading and value considerations.  
For the time being, it suffices to note that intelligence, in the form of models for value and stochastic 
estimates of collection, usage, and production patterns has the potential to improve cache management vis a 
vis current practice.  These improvements are likely to be of greater value as the collection environment 
becomes more dynamic and reduced latency assumes increased importance. 
 

OPEN-LOOP OPTIMIZATION 

In this section, we will discuss three approaches to optimizing performance of the IA:  schedulers (short-term 
horizons, on the order of hours); planners (long-term horizons, on the order of days, weeks, or months); and 
play-books (mixed-initiative approaches facilitating rapid review and customization by operators).  A fourth 
section discusses issues of a rolling horizon and real-time, event-driven re-optimization. 
 
These solutions have been characterized as open-loop because they do not explicitly model their own presence 
in the system.  When we discuss Model Predictive Control below, we will take up a powerful alternative 
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approach to optimization based on closed-loop, self-referential models drawn from recent advances in 
control theory. 
 
SCHEDULERS 

At this level of abstraction and time granularity, we are considering issues of near-real-time assignment of 
jobs to processing resources and/or service providers.  What jobs will be accomplished over, say, the next six 
hours; what processing, communications and storage devices will be used to execute those jobs; and what 
alternative contingency options are provided in the event of the occurrence of unscheduled or uncertain 
events?  When we consider the IA as an efficient requestor of services, it is the scheduling function of which we 
speak. 
 
The simplest approach is to build canned scripts to describe archive behaviors, negotiate firm interface 
agreements with external sources/consumers and simply let the machine run.  This is simple and effective 
when day-to-day processing flows are fairly stable, or when a small fixed number of processing flows can be 
defined in advance, the duty of the system being simply to execute the fixed schedule chosen for it. 
 
A much more difficult approach, but one with the potential for significant advantages in flexibility and 
customer service, is to dynamically schedule resources based on solving a complex optimization problem, 
where the objective function to be optimized reflects policy and resource constraints as well as measures of 
performance and customer value.  Depending on the form in which this problem is posed (e.g., the form of 
the objective function and constraints, and the mathematical formulation of the solution space), a number of 
solution techniques may be applicable, including:  linear programming; integer programming; stochastic 
search (e.g., genetic programming, simulated annealing, global integral optimization); and dynamic 
programming.  Significant engineering tradeoffs are then required to balance quality of solution against the 
time and resources needed to calculate the solution.  Further, the models embedded in a solution may 
themselves need to be adapted over time based on observed system characteristics and behaviors (see the 
more detailed discussion in Section 3 below). 
 
A schedule produced by an optimizing scheduler has a period of time during which it is valid, as well as 
assumptions about expected system behavior and anticipated loading which, if violated, will render the 
solution sub-optimal or infeasible, and thus require rescheduling or re-optimization.  The likelihood of the 
occurrence of events triggering rescheduling (either de novo, or as an adjustment to the current published 
schedule) is a significant factor affecting the engineering of the scheduler.  The more dynamic the system and 
its environment, the greater attention must be paid to flexibility, adaptability, and robustness.  Along this 
spectrum, it appears that current operations are very stable and loading is highly predictable.  One of the 
drivers toward intelligent schedulers is an anticipated shift toward increasingly more dynamic environments. 
 
Finally, we observe that scheduling may be a distributed function, in that the schedule adopted by any given 
facility may depend, in part, on the shift of some loading to other facilities, as well as the acceptance of 
additional loading from peers.  Thus, the scheduling algorithm executed at the IA (conceived of as a stand-
alone processing facility) may be part of a more general distributed optimization spread across and touching 
many other facilities.  The management of the scheduling process itself can thus become a challenging 
problem, and models of the uncertainties of contingent dependence on other facilities take on increased 
importance in a world of virtual archives and distributed processing. 
 
PLANNERS 

Here, the time horizon stretches out to days, weeks, or months, and the local “peaks” of loading are 
smoothed away by suitable abstraction and statistical aggregation.  In a distributed environment, loads are 
conceived of as system-wide, and the job of the planner is to raise confidence that the total load can be 
temporally and/or geographically leveled while still meeting system latency and throughput requirements at 
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scheduler-level time scales.  The models that are of interest concern processes that may extend over a 
considerable period of time – e.g., seasonally correlated events such as fires, weather phenomena, and crop 
cycles.  These geophysical models can be used to predict (stochastically) increases in certain types of loads 
and associated product requirements.  Another important source of models is data mining of historical usage 
logs, searching for trends and event-to-usage stochastics, correlations and patterns.  Similarly, the predicted 
system behavior embedded in plans can be tracked against observed behavior, flagging points at which actual 
loads begin to exceed anticipated thresholds, and thereby triggering plan adjustments or re-plans. 
 
Unlike schedulers, which ordinarily pose a problem as a constrained optimization, planners tend to search for 
satisficing solutions, i.e., an approach that meets all the goals and constraints, rather than a full optimization 
over a large search space.  Because there may be many satisficing solutions, human review and tailoring is 
often associated with plan generation software.  The extent to which planning of this sort can be fully 
automated (or will be automatable in the future) is open to debate.  It seems reasonable to assume that some 
level of human review and approval will often be required, and that out-of-spec behaviors will trigger alerts to 
archive operators and managers (see the discussion on mixed initiative below).  This approach also fits with 
latency requirements.  Planners tend to have considerably longer to execute than do schedulers, which may be 
required to rapidly re-optimize in response to uncertain events.  Intelligence in the IA can support the 
planning process through model generation and maintenance, data mining, software to propose plans for 
review, and automatic alerts when observed system loading or observed behavior strays away from planned 
predictions or assumptions. 
 
MIXED INITIATIVE CAPABILITIES, AND PLAYBOOKS 

These are approaches in which there is shared responsibility between decision and control software, on the 
one hand, and human managers and operators, on the other hand.  The relative portion of the job assigned to 
one or the other of these resources (human and machine) must be adjustable based, for example, on response 
latency requirements.  When there is plenty of leisure (deadlines are remote), the human can be 
proportionately more involved than when (by contrast) decision time lines are very short and latency is a 
paramount concern.  Engineering this trade-off is difficult, but there are a variety of AI techniques now 
available or in development that support adjustable autonomy of this sort. 
 
A particularly compelling example is the notion of a playbook .  Based on a football metaphor, the playbook 
consists of a predefined set of schedule templates prepared as possible responses to anticipated kinds of event 
or disruption.  By template, we mean that not all aspects of the schedule are fully specified.  The system has the 
ability to suggest ways of filling out and completing the schedule, but the human can also take control of this 
process, and can modify or tailor the schedule to suit current goals via a specialized editor which supports 
play/schedule visualization and graphical interaction.  The software for this type of schedule editing is 
powerful and adaptive; over time, user styles, preferences and tendencies can be learned by the editor for 
purposes of user-specific customization. 
 
A concept of operations based on the use of playbook might include an ongoing “what if” simulation 
capability interacting with the planners and schedulers.  When the simulation generates plausible event 
sequences that strain or break the system, a play (or plays) to address the situation can be developed and 
added to the playbook.  While this capability is, today, a manual process, one can imagine automating it, with 
an off-line simulation and analysis engine searching for pathological input sequences, analyzing their 
plausibility, and automatically generating system response templates for entry into the playbook. 
 
ROLLING HORIZON TECHNIQUES 

As discussed above, both schedulers and planners typically operate over set time horizons suitable to the 
problems they are trying to address.  They use models to make loading or event occurrence predictions over 
the time period of interest, and then produce feasible and/or optimal solutions of the associated constrained 
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problem.  In a typical concept of operations, the schedules (or plans) are then published and used – either 
until the horizon has expired, or until some event occurs that renders the schedule infeasible or severely and 
obviously suboptimal. 
 
Another strategy, however, is to solve the scheduling problem over a time horizon, say [t0, t0+∆], but with the 
intention of resolving the problem anew at some intermediate time, t1, where t0 < t1 < t0+∆.  The new 
solution would be solved over a new, extended horizon [t1, t1+∆].  This is then repeated for t2, with t1 < t2 < 
t1+∆ over a new horizon [t2, t2+∆], and so on. 
 
While it may be objected that time is wasted in generating the schedule over the unused interval [t1, t0+∆], 
often the effort can be reused, since for many algorithms (e.g., simulated annealing, or genetic algorithms] the 
previous solution can serve as an optimized “seed” to begin the new search process.  Further, the length of 
the optimization horizon induces an inertial, smoothing effect that keeps the system from settling too quickly 
into short-term local extrema5. 
 
To make such a scheme work, there must be available models to predict how the system will behave over the 
time horizon of interest.  Since significant events may be stochastic, this means somehow sampling the space 
of possible futures, and arriving at schedules (or plans) that optimize, say, expected value, or that maintain a 
high probability of staying away from undesirable breakage (that is, measures of robustness are used as the 
objective function).  When we use the word “intelligence” of an IA, it is the formation, maintenance, and 
algorithmic use of such models that we principally have in mind.  One advantage of rolling horizon 
approaches is that they use new information that has been collected in the elapsed interval [t0, t1] to update 
the models, thereby also improving prediction accuracy over the overlap [t1, t0+∆] as well as extending the 
prediction to the new interval [t0+∆, t1+∆].  Thus, as new information becomes available, it is automatically 
and systematically used to improve model accuracy and, hence, associated optimizations6,7. 
 
In practice, it is not necessary to wait until the selected new schedule time, t1, to perform re-optimization.  If 
an event occurs at, say, time te prior to t1 that jeopardizes the schedule calculated at t0, there is nothing to 
prevent throwing out the existing schedule, and recalculating de novo a new schedule starting at  te that takes 
account of the event. 
 
Rolling horizon approaches are well known and used for modeling of physical and geophysical phenomena 
(e.g., weather forecasting).  There is no reason why they cannot be equally effectively applied to management 
of processing flow and data staging in a processing facility, like a data archive, that is itself subject to 
stochastic events with controllable internal responses. 
 

MACHINE LEARNING, STATISTICAL ANALYSIS, AND DATA MINING 

In this section, we will briefly mention several modeling approaches, and their potential applicability to an 
Intelligent Archive. 
 
Pattern recognition and classifiers:  In a typical application, training data is prepared using skilled human 

beings, past observations, or highly accurate model-based scientific codes.  These training sets are then 
used to generate efficient codes that reproduce, on an input-output basis, the results produced by the 
high fidelity classifier.  The advantage is that these new algorithms are very fast, in effect trading off 
computational complexity against acceptable (based on practical considerations) Type I and Type II 
error rates.  There are a large number of such techniques, including (most prominently) Neural Networks 
(of various flavors), fuzzy logic, and rule-based classifiers (perhaps derived automatically as the result of 
genetic algorithms searching through rule-space).  Most recently, there has been much interest in Support 
Vector Machines8, in which the natural domain (represented as a vector space) is mapped by an inner-
product-preserving transformation onto a Hilbert Space, whereupon the training set is optimally 
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separated via a hyperplane.  The primary utility for these algorithms appears to be in content-based 
extraction of events and/or metadata on ingested data and subsequent down-stream products.  
However, they could also be used in data mining of event and request logs to extract and learn patterns 
and correlations of system usage and loading. 

 
Clustering:  When training sets are not available, machine learning tools must boot-strap themselves based 

on the raw data itself.  One way this is done is by searching for clusters of data in some suitably 
constructed metric space tied to the data.  These clusters may, it is hoped, reflect underlying interesting 
structures or correlations.  For example, a cluster taken from request logs might identify, in a suitable 
vector representation, geographical and spectral correlations.  This, in turn, might suggest to the analyst 
the occurrence of a type of geophysical event.  The occurrence of this event, in the future, might then be 
used to predict or suggest the associated type of loading patterns, allowing the IA to pre-stage the data 
to disk and provide improved latency of product delivery.  Clustering is a widely used tool in data mining 
packages and applications9,10. 

 
Statistical analysis and regression:  While not strictly speaking “artificial intelligence,” statistical analysis of 

data sets is a widely used and very effective way of extracting useful information and summary 
characterizations of large data sets.  It is almost certain that an intelligent archive would make use of 
such techniques, both as a way of data reduction and generation of metadata, and as a means for 
building and maintaining accurate stochastic and/or probabilistic models of geophysical quantities, as 
well as the relationship between data content and usage. 

 
Entropy-based rule induction:  Another boot-strapping technique involves successively partitioning the 

underlying data set so that each successive division minimizes the entropy of the resulting partition 
(entropy is conceived here as an indication of information content).  Either driven by a graphical user 
interface, or performed automatically, the rules in question amount to specifications of data separation 
hyperplanes.  The end product of a sequence of such partitions may identify significantly correlated 
samples.  A heuristic examination of these subsets may then yield insight into underlying similarities, 
structure or causality.  The rule sequence can then be imposed on new data sets to identify the existence 
and extent of the associated characteristics.  Again, the most likely place for application of such 
techniques is data mining of usage and request logs tied to metadata characterizations of the requested 
data sets7,8. 

 
Bayesian Networks:  This well-known and widely-used technique formally characterizes internal 

correlations and conditional correlations in a tree-based representation.  They can serve as the basis for 
Markov Chain representations of state space dynamics, since they can be interpreted as providing state 
transition probabilities.  These Markov Chains, in turn, can support computationally efficient Monte 
Carlo characterizations of complex system interactions – a mechanism for modeling the stochastics and 
distributions associated with event-driven system evolution.  As we have seen, these predictive models 
provide a very useful input to optimization algorithms attempting to maximize expected value, reduce 
maximum risk, etc.11,12 

 
Fuzzy and Neuro-Fuzzy Modeling:  As a final example, we refer to the impressive results that have been 

achieved through the application of so-called ANFIS (adaptive neuro fuzzy inference system) to a variety of 
linear and non-linear modeling problems.  The message here is that the developer has a wide variety of 
approaches from which to select, many of which have a deep theoretical foundation.  For example, 
ANFIS has been shown to have its own Stone-Weierstrauss Theorem – a guarantee of arbitrarily close 
approximation on compact sets13. 
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MODEL PREDICTIVE CONTROL 

In this section, we will consider a novel application taken from control theory to the problem of optimizing 
operations of an Intelligent Archive – Model Predictive Control.  We will see that this approach offers an 
attractive unifying architecture and uses the substantial body of theory and ongoing research from the control 
theoretic community.  For the interested reader, an Appendix has been provided to introduce MPC and 
discuss some of its potential advantages and challenges.  Briefly, MPC uses predictive models of system 
stochastics and dynamics to estimate the effect of various control signals under consideration.  It then applies 
an objective function to these predicted outcomes, and selects the control signal that achieves the best result 
(as measured by the OF).  One strength of MPC is that it includes a model of its own behavior and ability to 
respond to uncertain events (that is, it is closed loop in the classic, self-referential sense of control theory).  
Using the generic Figure 3 as a template, the discussion below will briefly consider: (a) the control signals an 
MPC controller might generate; (b) the types of models it will require; (c) state estimation (SE in the figure) for 
the models and entities in the system;  (d) the form of the objective function (OF in the figure) and optimizing 
algorithm it might employ; and finally (e) a concept of operations for an MPC implementation tied to the illustrative 
scenario described in the section above.   
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Figure 3. An MPC System Diagram for an Intelligent Archive.  OF indicates the Objective Function used to evaluate the level of 
optimization.  SE is the State Estimation, or information about the current status and performance of various elements within the 

system. 

 
 
CONTROL SIGNALS 

The resource controls the MPC can command or influence  include: 
 

• Hardware resource management – the disk cache, processors, robotic tape archive, and 
communications gear and bandwidth. 

• Software scheduling – in particular, the selection of what algorithms to apply to incoming data 
streams; metadata extraction; process branching based on event detection; support for state 
estimation (model maintenance and adaptation, data mining for trending, clustering, usage pattern 
recognition); and optimization of MPC control decisions. 

• Event generation – that is, tip-offs and sensor retasking requests in response to event detection. 
• Product delivery – that is, the decision of when and how to send requested products to customers. 
• Negotiation for services with distributed storage and processing peers. 
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In Figure 3, we have grouped the above into two major types of control signal:  commands to the archival 
facility resources and peers; and re-tasking commands to the data providers. 
 
MODELS 

Models for the MPC controller fall into four groups (reference is made to Figure 1-1):  (1) geophysical processes 
being observed;  (2) the data providers – that is, the vehicles, sensors, and processing facilities that generate the 
input data stream; (3) the IA facility and its peers; and (4) the user community.  In addition, an MPC controller 
for the IA will be interested in discovering and modeling (5) significant correlations between events occurring in 
each of these domains. 
 
Geophysical processes:  This includes predictive models of event occurrence known to require specialized 

processing, low-latency product delivery, additional loading, or other kinds of impact to the IA.  
The idea is that by understanding the likelihood of occurrence of such events, the IA can plan for 
them, and be better prepared to respond when they occur. 

 
Data providers:  This includes ephemeris and satellite constellation information, accessibility windows, types 

of sensing (and constraints – e.g., weather), downlink times, raw data processing and delivery 
latencies, retasking options and latencies, and retasking priorities.  In addition to modeling loading 
(especially event-driven loading deriving from correlations with geophysical events), the IA of the 
future will need to understand retasking options, and the associated down-stream loading.   

 
Facility and peers:  This includes predictive models for performance (FLOPS, bandwidth, storage), error 

rates, processing flows, alternative processing strategies, and similar capabilities and demands 
from peer facilities. 

 
Users:  This includes models for both standing and ad hoc request patterns and associated loading (for 

example, seasonal periodicities reflecting academic or research calendars).  It also includes 
significant event correlations and associated request patterns (see correlations below). 

 
Correlations:  A major goal is to understand how events in one area (geophysical events, for example) affect 

behavior in other areas (user requests, data provider tasking strategies, specialized processing and 
event detection, etc.). 

 
STATE ESTIMATION 

State estimation means the ability to assess and predict values and status of the various entities constituting 
the plant (that is, the system being controlled, and its environment), including the complex correlations and 
dependencies we discussed at some length in Section 1.  Regarding the IA facility, the MPC controller must 
know the status of the disk cache, the job execution status and queue of the processing and communications 
gear; the status of negotiated loading agreements with network storage and processing peers; and sufficient 
information to stage data and sequence processing to achieve production goals.  Concerning the sensors and 
collection environment, it must understand the accessibility patterns and downlink schedules, event 
occurrence stochastics, retasking policies in response to events, and event-retask-processing feedback loops.  
Concerning users, it must not only understand the current set of requests, but have predictive models 
concerning how users are likely to respond to the occurrence of geophysical events as well as cyclic usage 
patterns. 
 
OBJECTIVE FUNCTION AND OPTIMIZING ALGORITHMS 

The objective function captures management goals or rules for system operation.  A more detailed discussion 
of the technical challenges facing definition of the OF is provided below.  Experience has shown that the 
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definition of the OF, and the selection of relative value for parameters embedded in it, can be a source of 
significant discussion.  Here is where latency-related product value is assessed, relative priority among users is 
adjudicated, alternative strategies for satisfying requests are compared and evaluated, and probabilities of 
occurrence are factored into overall performance objectives.  Also, these issues are of direct concern both to 
users and to the IA management, and different organizational entities often have differing priorities for 
system behavior.  Finally, the mathematical form of the OF can strongly affect the type of algorithm that can 
be efficiently employed to optimize it. 
 
CONCEPT OF OPERATIONS 

Armed with these models and an ongoing stream of SE inputs, the MPC controller is well positioned to 
perform any or all of the complex optimizations and adaptations we have previously described.  Since it 
understands stochastics of geophysical event occurrence, it can anticipate the likelihood of such events, and 
position itself (in advance) to optimally respond (retasking, event detection, metadata, low latency delivery 
pipes, etc).  Since it understands the correlations between event occurrence and user request patterns, it can 
anticipate expected loading, negotiate peer support, pre-stage associated data sets, and in general optimize for 
reduced latency and product quality.  Since it understands its own resources and has control over them, it can 
arrange processing sequences so as to optimally balance routine standing processing against transient high-
value low-latency event-driven loading, smoothing and balancing system loading over time horizons of 
sufficient length to prevent chattering and instability.  
 
Recalling the example fire scenario from Section 1 above, it should now be clear how the MPC controller 
might be able to achieve the kinds of system functional requirements that were described there.  All of the 
types of predictive behaviors – time and location likelihoods for fire occurrence, sensor retasking options and 
latencies, surveillance and event detection processing, user request patterns and associated loadings, etc. – 
have a natural “home” in the MPC framework.  In short, any phenomena felt worthy of modeling based on possible 
impact on performance can, and should, have a place in the MPC paradigm.  From a theoretical point of view, the 
approach is clean and satisfying: model both state and dynamics of what’s important to sufficient detail to 
determine interactions with other components over time horizons adequate for smoothing and stability.  
Then, use these models to select among control options those that optimize selected performance goals (as 
captured in a formal objective function).  And, do this in a way that takes explicit cognizance of the presence 
of the controller and its own ability to respond and adjust to dynamic and uncertain event occurrence. 
 

3. TECHNICAL CHALLENGES 

This section addresses the most significant technical challenges to optimizing resources in an Intelligent 
Archive.  Seven subsections discuss, in turn: model construction, monitoring, and adaptation; definition of a 
suitable objective function; computational complexity; feedback loop pathologies; state estimation; hybrid systems; and 
hierarchical and distributed architectures. 
 

CONSTRUCTION, MONITORING, AND ADAPTATION OF MODELS 

Building models suitable for practical use is something of a cottage industry for applied mathematicians.  It 
tends to be expensive, and the models tend to be brittle.  Self-constructing, data-driven models, by 
comparison, have the potential to automate quite a lot the model construction process.  A neural net, for 
example, needs only a well-constructed training set and an interface to the data to produce, in many instances, 
quite satisfactory pattern recognition or classification routines – two of the capabilities we have identified as 
needed for the IA (to support metadata construction and event detection, for example).  In any case, for the 
IA to be practicable from both cost and adaptability perspectives, means must be provided for automatically 
generating, monitoring, and adapting most or all of the models used to control the system. 
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The most promising approaches currently on the horizon are various types of machine learning and database 
mining.  For example, good training sets can be derived using high-precision (and computationally expensive) 
science-based algorithms; these can then be used to train more computationally efficient ML instantiations to 
meet the less exacting requirements of operations optimization.  Likewise, database mining of history logs 
focused on patterns and correlations in event occurrence and user request patterns can identify significant 
trends and system dynamics.  Other models must capture job sequencing and expected performance, disk 
cache behaviors (correlated to usage patterns), negotiated services from processing and performance peers, 
expected latencies of sensors and downlinks, and user priority profiles and latency requirements. 
 
Concerning adaptation, predictive approaches have the advantage that predicted system behavior is continually 
available for comparison against observed system behavior (see the discussion below on state estimation).  The 
difference (in the appropriate space) between the two (the residuals, to use the terminology of Kalman Filters) 
becomes important information both to signal the occurrence of events and/or as input for model 
adaptation.  Dynamical models can be constructed to automatically produce and use this type of residual 
information14,15,16,17,18. 
 
System integration of models will also be a challenge.  None of these models, in and of itself, is beyond the 
state of the art.  What is a stretch, by today’s standards, is the notion of integrating all of these models into a 
global predictive model of system behavior and stochastics adequate to support even short-term optimization 
decisions.  The alternative, however, is a piece-meal collection of separate controllers and optimizers, each 
focused narrowly on one aspect of the problem, with no overarching, system-level view to balance among 
them and detect/prevent pathologies.  In such a system-level approach, adaptation and insertion of improved 
models will require strict interface definitions and well-defined processes for validation of model performance 
(accuracy, speed, robustness, etc.)19,20,21. 
 

DEFINITION OF AN OBJECTIVE FUNCTION 

In a fully integrated approach, the objective function is tied to top-level measures of performance (such as 
“value delivered to customer”).  Such a measure necessarily aggregates many other component or surrogate 
metrics, but must accurately capture user and management assessment of system performance.  The key 
components that might enter into such a top-level value function include: 
 

• Latency:  primarily event-to-delivery latency, to which the archive contributes; 
• Product quality:  particularly any value-added processing, fusion, or registration that might have been 

provided; 
• Adherence to published delivery schedule:  that is, meeting promised production timelines, so that the user 

can confidently plan; 
• Customer priority:  reflecting the agreed-to pecking order in the user community; 
• Product correlations:  that is, honoring the fact that some data requests are only of utility if others are 

also provided; and 
• Metadata services:  ease and precision of search. 

 
Given these top-level measures, there are other internal secondary metrics, relatively invisible to the user, that 
measure efficiency.  Notice that if improved efficiency leads to improvements in the above-described user-
level metrics, then these secondary measures may not need to be separately and individually optimized.  These 
other metrics include the following: 
 

• Resource utilization:  keeping as much of the system resources usefully engaged as possible; 
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• Peer-to-peer negotiations:  off-loading processing in peak periods, and accepting additional processing in 
slack periods, for system-wide load-leveling;  

• Throughput:  gross measures of over-all amounts of product delivered, irrespective of quality, priority 
and latency; and 

• Cost: expenses for computation, storage, and communication that reflect the use of external and 
internal resources with varying cost/performance characteristics.   

 
The mathematical form of the OF is a matter of concern, since it can impact the computational performance 
of the associated optimizing algorithms.  Issues include: 
 

• continuous dependence on key input variables 
• convexity 
• dynamic range 
• level-to-level consistency in a hierarchical or distributed implementation 

 
Finally, it must be possible to adjust the OF, more or less in real time, to reflect changing management 
priorities, as it is the most natural means for management to adjust system behavior and performance.  One 
useful piece of information to feed back to management is the anticipated effect resulting from a proposed 
change to an OF parameter.  It may even be possible for management to specify its goals on an input-output 
basis, leaving the system to automatically adjust OF parameters to achieve the desired behaviors.  
 

COMPUTATIONAL COMPLEXITY 

While the performance objectives above require a large amount of computing power in today’s terms, the 
computational complexity should not be a significant obstacle in the long run.  Two key elements that 
support this provisional thesis are:  (1) Moore’s Law, and (2) the inherent and natural parallelizability of the 
proposed approach (stochastic search).  Perhaps the most demanding scenario involves use of an event 
driven simulation embedded in the recursive structure.  (In formal terms, we replace the full backwards search 
called from by Bellman’s equation with a “cost to go” estimate using the current state22,23,24.) 
 
Several techniques can accelerate or improve stochastic search.  One that may be particularly relevant here is 
estimation of the solution backbone25,26,27.  In a situation where value is dominated by a few key drivers, one 
imagines first solving a reduced problem focused solely on these “tall poles.”  The best (one, or a few) are 
then used as fixed seeds around which additional lower valued activities are tightly packed.  It may also be 
possible to solve the reduced problem using classical techniques (linear programming [LP], dynamic 
programming [DP], etc.)28,29 and use this is a high-quality initial solution to seed the stochastic search. 
 

FEEDBACK LOOP PATHOLOGIES, STABILITY, AND ROBUSTNESS 

An advantage of a control theoretic view of the problem of operations management is a ready-made 
conceptual context for many of the issues that arise in dynamical systems, together with a long research 
history of solution approaches.  This context highlights the potential risk from feedback loop pathologies.  
Systems that are agile (that is, low-latency event response) can exhibit non-intuitive behaviors when they 
become self-referential (that is, when outputs are linked back, perhaps after several intermediate steps, to 
input).  Examples of such pathologies include:  live-and dead-lock (a system waiting for itself); chattering 
(rapid alternation across discretization thresholds); and ringing (positive eigenvalues lead to exponential 
power growth)30.  Systems that are not agile, by comparison, may be so slow to respond (and, hence, so sub-
optimal) that these behaviors are simply not an issue. 
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The stability of the system has practical consequences in the plan-to-plan variability.  Heuristically, we seek to 
avoid situations where the optimizing controller produces very different plans (as perceived from the users’ 
point of view) in response to very small changes in input.  It is not unusual, for example, to find many 
feasible solutions that produce almost identical outputs as measured by the objective function, but are far 
apart when measured by a metric comparing plan similarity.  The solution requires a trade-off that takes the 
operational impact of such variability into account, and is resistant to radical plan variations that achieve only 
marginal improvements in the OF.  Both LP (linear programming) and DP (dynamic programming) solvers 
are notorious for exhibiting this type of behavior (that is, very small perturbations of the input conditions can 
lead to solutions that are virtually identical in value but that are dissimilar in selected operations and their 
order).  Some algorithms (e.g., stochastic search, such as simulated annealing) have the property that they can 
accept the current plan as a seed for generation of the next plan.  If a metric of plan-similarity is available, it 
may even be possible to build this directly into the OF itself 5,16,31. 
 
System robustness refers to tolerance for errors in input state estimation and unmodeled dynamics.  That is, a 
robust system can continue to maintain reasonable (though perhaps sub-optimal) behavior even in the face of 
uncertainty concerning current and/or predicted future system states.  In practical terms, it means making 
continuous estimates of uncertainty and alerting operations personnel when thresholds have been exceeded.  
Thus, the system must contain models or estimates of its own confidence in its ability to correctly (within 
stated performance thresholds) continue autonomous operations.  Perhaps the single most powerful tool 
addressing robustness is to make the system adaptive:  that is, to incorporate estimation techniques capable of 
automatically tracking and adjusting parameters embedded in (that is, treated as mathematical constants in) 
dynamical models.  One especially important example is parametric characterization of probabilistic or 
stochastic processes15,16,32,33. 
 
As new models and algorithms are introduced into the system over time, a rapid, repeatable process must be 
in place to validate that their incorporation does not compromise stability or robustness and does not lead to 
unwanted pathologies.  Thus, the tools, tests, and adjustment procedures to initialize the system at its 
inception must become part of its ongoing ancillary support services.  In effect, we must have the ability to 
rebuild the system on-the-fly in response to new capabilities or changes in the operating environment.  
Procedures and tools to “fix” the system and revalidate it should be (to the extent possible) automated and 
automatically initiated.

STATE ESTIMATION 

An advantage of a control theoretic approach to this problem is that control theory (as the result of long 
experience) always and necessarily incorporates a full treatment of the state estimation techniques on which it 
relies7,14,19,34,35.  As described in §2 above, there are five major groups of models for which SE inputs will be 
required:  (1) geophysical processes; (2) the data providers; (3) the IA facility and its peers; (4) the user 
community; and (5) significant correlations among these four entities.  Of these, (1) and (3) are relatively well-
understood in the sense that models and supporting SE inputs in these areas exist and are currently routinely 
utilized for a variety of purposes.  Concerning the data providers (2), models for the physics of orbital 
constellations, accessibility, and sensor characteristics are available.  Less well-understood are the 
organizational and human aspects of sensor tasking and priorities.  A similar problem exists in (4), where 
reliable models for user behaviors and request patterns (the understanding of which is critical to predictive 
optimizations) are not available.  How does one “instrument” the user community in such a way that system 
loading and latency requirements can be anticipated and optimized?  One promising approach is to use 
models of correlations (5) as a way to make these “hidden variables” observable (in the control theoretic 
sense).  Thus, for example, occurrence of a geophysical event becomes a predictor of certain types of user 
request patterns and associated processing loads.  It is precisely this linkage between observable events, on 
the one hand, and hidden characteristics, on the other hand, that motivates the development and maintenance 
of the correlation models.  The log of system loading, performance, and user requests becomes a major 
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source of data for this sort of predictive and adaptive analysis.  Data mining of this log data, conceived as a form 
of state estimation, will be a significant resource for system intelligence and adaptability. 
 
An architecture incorporating state estimation considerations will contain two essential elements.  First, a 
physical infrastructure is needed to gather and report timely state estimates to the models used by the optimizing 
controller.  And second, internal algorithms must continually track the accuracy and reliability of the received 
data.  The best such algorithms are based on residuals – that is, predicted state values are compared against the 
observed state values.  Thresholds are established reflecting the operation’s tolerance for uncertainty (and 
associated sub-optimality), and threshold excedence flags the need for adaptive adjustment (perhaps 
automatically performed, or perhaps with some level of operator involvement).  As noted in the previous 
discussion, there is a tight coupling between the robustness of the system and the engineering associated with 
the state estimation function. 
 

HYBRID SYSTEMS 

In classical control theory, a hybrid system refers to a finite state machine (= discrete system) in which there is a 
separate controller (or control law) associated with each state.  The idea is that as the system changes from 
state to state (reflecting major alterations in the external environment, for example), the system shifts to the 
control law (that is, the set of models and optimization approach) best suited to current conditions.  In our 
previous discussions, this notion was to some extent subsumed in the notion of modeling fidelity and 
adaptation;  select the model that best represents the observed state.  Similarly, playbooks reflect a somewhat 
similar notion:  select the play and tailor it to best match what is currently going on.  Hybrid amalgams of 
continuous and discrete controls and techniques are widely used, and might well be appropriate to the 
intelligent archive20,23,36 
 

DISTRIBUTED AND HIERARCHICAL ARCHITECTURES 

Time horizons for the processes of concern span several orders of magnitude (from minutes, for production 
scheduling; to diurnal access patterns; to seasonal variations in geophysical processes).  This fact tends to 
drive toward a hierarchical approach, in which higher levels in the tree correspond to models associated state 
estimates extending over longer periods of time; and in which processes with short response cycles reside at 
nodes lower in the tree.  Maintaining control theoretic properties (optimality, stability, observability, 
controllability, robustness) across levels remains a challenging and active area of research28,29,37. 
 
We have also observed that an IA should be thought of as a single node in a distributed collection of 
processing and storage facilities.  Thus, it is likely that some kinds of optimization will require peer-to-peer 
negotiations that converge iteratively to a global solution.  There is a trade-off here against a single centralized 
solution.  It may be that the final architecture computes some aspects of the solution using local/distributed 
techniques (e.g., for control nodes lower in hierarchy), and computes other aspects centrally (e.g., for nodes 
or processes over longer time horizons). 
 

4. SUMMARY AND FUTURE DIRECTIONS 

In this section, we will briefly recapitulate the major conclusions and indicate possible areas of emphasis for 
future research and development.  The reader will have noticed an emphasis on a control theoretic view of 
this problem.  The archive is conceived as one component of a larger system which includes the sensor 
constellation (and its management and tasking functions and facilities), the underlying geophysical processes 
of interest, the user community, and the archive itself.  The archive has the ability to issue what we have 
conceptually termed control signals, both to its own internal processing and storage resources, but also 
(explicitly or implicitly) to peers in a distributed, networked environment and to other system components.  
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These control signals produce effects, which can then result in low-latency feedback loops – particularly when 
and if the system becomes more agile, flexible, and adaptive than is currently the case.  A control theoretic 
approach models all the aspects of system behavior that might affect the optimality of the control decisions, 
and (we have suggested) does so predictively, both assessing future impact, and taking account of its own 
presence in the system to respond to future uncertain events if they arise.  We have termed this approach to 
the problem Model Predictive Control, and noted that the controls community has already begun to use such 
techniques for optimized enterprise management – an application that until recently had been treated as an 
advanced problem in operations research.  While MPC is not the only available approach to achieving the 
performance and optimization goals discussed in the problem statement, it provides a conceptual framework 
within which to discuss and assess all the major technical issues facing any proposed solution. 
 
Three major drivers motivate the introduction of intelligence into archive.  First, we wish to reduce 
processing latency by predictive pre-staging of data into the high performance disk cache.  The predictive 
models that might be of use to do this include:  temporal, geographic, and phenomenological models (e.g., of 
land-cover) providing stochastic indications of possible event occurrence (where, and when); user usage 
patterns, both event-based and as correlated to the cyclic nature of the academic and research calendar; and 
retasking feedback loops and associated specialized processing loads.  Second, we wish to provide low latency 
tip-off and cuing for rapid sensor retasking.  This requires defining low-latency processing paths both for 
surveillance monitoring and for focused high-precision localized analysis.  This requirement overlaps and 
reinforces the need for more and better metadata, both to support as well as to support data mining for 
underlying usage patterns and correlations.  The third driver is that the solution must exist within a 
distributed, interconnected network of processing and storage resources.  This will require negotiation, and 
the ability to tradeoff network bandwidth and latency, on the one hand, against processing latency, system 
stability, and such future capabilities as on-demand-processing, on the other hand. 
 
In addition to the MPC control theoretic paradigm, three other areas of technology are particularly relevant to 
this problem.  First, there are the strategies for managing the disk cache – the algorithms that decide when to 
purge data from disk to make room for new data sets,  and which data sets to choose.  Secondly, there are 
resource optimization techniques such as open-loop planners and schedulers, as well as rolling horizon 
techniques that can smooth spikes and avoid temporally localized extrema.  Finally, a number of machine 
learning and AI technologies are available to assist in the automatic generation and adaptive maintenance of 
the many models that will be required by any predictive optimization approach. 
 
We also presented the significant technical challenge facing the development of such a capability.  At the top 
of the list is the need for automated support for model generation and maintenance, including an architectural 
framework that recognizes this function as an integral (indeed, essential) capability.  Another challenge is the 
definition of a suitable objective function, able to capture and balance the many competing demands and 
constraints on the system.  A third is algorithmic and hardware approaches adequate to the computational 
complexity of such an optimizer.  The difficulties of state estimation (and, in particular, uncertainty, 
adaptability and observability) and the pathologies of feedback systems were described.  Another challenge is 
the use of hybrid systems – combinations of discrete state machines, with each state corresponding to a 
tailored control law or optimization approach.  And finally, we observed that the eventual solution will almost 
certainly involve both hierarchical decomposition and distributed negotiation – areas that are well understood 
for some types of algorithms, but that are still research topics in the controls community. 
 
All of these are currently active and supported areas of research in the control theory field. There is every 
reason to believe that, with continued support, all of the required technologies will be available within the 
time frame envisioned for this work.  Since all will almost certainly be required for the eventual solution, we 
resist the temptation to rank or prioritize.  That said, probably the area least understood at the moment is 
automatic model generation.  While many machine learning algorithms have been proposed and analyzed, the 
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problem of integrating the right combination of these into a single, tightly coupled and autonomously 
adaptive system remains, at the moment, beyond our reach. 
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Appendix A - Introduction to Model Predictive Control 
 
The purpose of this Appendix is to provide a brief, accessible introduction to Model Predictive Control 
(§A.1), and to raise some observations that should be taken into account in considering its use in an 
Intelligent Archive (§A.2).
 
A.1  Background and Definitions 
 
In recent years, the controls community has taken up problems in enterprise management6,38 – an application that 
had been considered special provenance of operations research and artificial intelligence (i.e., providing 
decision support via database mining).  When we apply a control theoretic view to an enterprise, something 
like Figure A-1 emerges.  The optimizing controller selects among available, feasible options to send control signals, 
CS, to the plant.  (The term plant derives from earlier days, when the application was (for example) a chemical 
processing plant or a refinery.)  The selection of the character, timing, and intensity of these control signals is 
the purpose of the controller.  Coming back to the controller from the plant are as series of state estimates, SE, 
reflecting both the state of the plant as regards settings, health and status; but also measurements of the 
physical underlying processes – in a chemical production plant, for example, these might include temperature 
and pressure, concentrations, and flow rates, as well as measurements of factors to some extent beyond the 
reach of the controller, but that have the ability affect product quality and timeliness.  The controller uses 
these state estimates (perhaps in the form of actual measurements, but also in the form of derivative or 
predictive models, which may be stochastic) to optimize the value of the product delivered to the end customer.  
To this end, measurements of product quality are made and provided to an objective function, OF.  The OF 
balances the many (often competing) measures of product value into a comprehensive assessment, using 
policy and directives from management for purposes of tuning and emphasis.  Put simply, the job of the 
controller is to select feasible control signals (that is, control signals that satisfy all known policy and 
operational constraints) so as to optimize delivered value as measured by the objective function. 
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Figure A-1.  A Control Theoretic View of Enterprise Management 
 
The way in which a model predictive controller (MPC) approaches this problem is to attempt to predict what the 
effect will be of applying one or another of the available control signals to the portions of the plant under its 
control.  The notional situation is shown in Figure A-2.  In this simplified situation, confronted with three 
control options – C1, C2 and C3 – the MPC plays a predictive model forward in time for each control 
options, producing corresponding estimated outputs o1, o2, and o3.  It then determines the best outcome, as 
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measured by the objective function, and the corresponding control signal is selected (i.e., if o2 is the optimal 
estimated outcome, then C2 is issued to the plant for execution).  

 
Figure A-2.  MPC Optimizes Over a Time Horizon 
 
Before proceeding, several observations must be made about this simplified representation.  First, typically 
the MPC only considers a finite time horizon for its prediction – one consistent with the accuracy of the 
predictive models at its disposal.  However, unlike an open-loop scheduler which produces a complete set of 
control signals covering the entire time horizon, the MPC only issues a control signal valid for a short period 
of time – much shorter than the length of the horizon being considered.  The next point in time at which a 
control signal is required, whether scheduled or event driven, the process is repeated.  Why, then, bother with 
the extended time horizon at all?  The answer is that the MPC explicitly models the possible future control 
decisions that will have to be made, and models itself as the optimizing entity making those decisions.  That is, the MPC 
is closed-loop (= self-referential) in that it explicitly models its own presence in the system, and its own ability to 
dynamically adjust to the uncertainties inherent in an underlying stochastic processes.  Thus, the control 
signal actually issued by the MPC is the one that best optimizes long-range performance under the assumption 
that an optimizing controller is present to respond to and re-optimize based on the occurrence of uncertain events.  The resulting 
forward-branching tree, with its stochastic properties, is the mathematical object of interest.  If it can be 
represented as a discrete state space, Dynamic Programming becomes the solution method of choice [24, 25]. 
 
Returning briefly to Figure A-2, we can redisplay it showing how this predictive model capability is actually 
implemented (see Figure A-3).  Within the MPC controller are models for all aspects of the system, including 
the MPC controller itself.  Conceptually, the necessary and sufficient characteristic of these models is that 
they are adequate (explicitly, or implicitly) to support an event-driven-simulation of system response to the 
full range of possible system inputs, taking account of the presence of the MPC controller and the feedback 
loops in which it participates. 
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Figure A-3.  The MPC Controller Contains Models of All Relevant System 
   Entities, Including Itself 
 
In practice, this event-driven-simulation at the heart of the predictive optimizer may take the form of Markov 
chains, Monte Carlo sampling experiments, or even closed-form solutions (when the models and drivers 
exhibit sufficient structure).  Clearly, the models participating in this predictive process are the “crown jewels” 
of the MPC-based enterprise. Depending on the application, the availability and accuracy of state estimates to 
support these models may be a major performance driver.  When this is the case, it may be possible to show 
that overall performance is enhanced by assigning constrained resources to SE activities (e.g., to maintain 
model currency and accuracy) – resources that would otherwise have been available for product delivery to 
customers. 
 
 
A.2  Considerations 
 
In addition to the conceptual satisfaction inherent in MPC, there are a number of other advantages deriving 
from a control theoretic approach.  First is the ability to model the effect of feedback loops, and the potential 
occurrence of associated pathologies.  From its inception, control theory has had to deal with feedback loops, 
and with the delays, uncertainties, reinforcements, and non-intuitive behaviors they engender.  These issues 
are of most concern in a complex and highly dynamic environment that must react with agility (= low 
latency), and in which the end-to-end performance is dependent on, or conditioned by, a large number of 
intervening processes.  It appears, based on our discussion in §1, that the remote sensing systems of the 
future (and the IAs that support them) will become increasingly dynamic, agile, and complex, so that a 
control theoretic solution may be indicated.  Second, there are a number of system-level performance 
characteristics that are desirable, but that are difficult to model or optimize without notions from control 
theory.  These include stability (and, in the case at hand, this means maintenance of expected behavior for 
standing customers in the face of unusual event-driven additional loading); robustness (that is, maintaining 
acceptable behavior in the face of uncertainties in state estimates and predictions); chattering (that is, 
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dampening excessive swings or oscillations when the system transitions across discrete threshold boundaries); 
and observability (that is, using models to infer and predict the state of elements that are not directly 
observable).  And third, an optimizing controller of the sort described here ultimately traces all options and 
decisions up to the top-level objective function (tied, it is hoped, to value of delivered product).  This means 
that it is possible, for example, to do sensitivity analysis, determining what factors in the space of decision 
control variables are most important given the current circumstances.  The idea, here, is that the marginal utility (= 
value gradient) can vary greatly from component to component, depending on current circumstances.  If we 
refer to this structural response of the OF to variations in control signal as the value landscape of the system at 
any point in time [34, 33], the ability to generate and analyze the value landscape can have significant 
operational utility.  For example, under normal operating conditions, it may be that there is considerable 
flexibility in selecting a plan or schedule: many control options are virtually indistinguishable in terms of 
expected value.  In such a case, Archive management may choose to impose additional factors or constraints, 
confident that top-level performance measures will not be penalized.  In another scenario, the analysis may 
reveal that one or two factors are highly significant, and should be the principle focus of current attention.  
Knowing this, operational personnel might initiate additional modeling or knowledge extraction algorithms 
focused on these key factors, both the further understand the problem, and to develop appropriate responses 
(see, for example, the discussion under playbooks in §2 above). 
 
Despite these advantages, a balanced assessment must consider the costs and risks associated with such an 
approach.  In §3 of the text, we have discussed technical challenges.  Here, we note three issues that a MPC 
approach must address.  One is developmental cost and risk.  If an archive can operate adequately using 
simple (or even legacy) algorithms, it becomes hard to justify the increased cost and technical risk associated 
with a more complex MPC approach.  A second issue concerns computational complexity and latency.  How 
long will the optimization routines take to execute, and what impact will that added latency have on end-to-
end performance?  Along similar lines, are they scalable and/or parallelizable, thereby enabling a latency-vs-
hardware cost tradeoff?  Third and finally, given the complexity of an enterprise such as an IA and the 
collection system in which it is embedded, it is very unlikely that closed-form solutions can be produced.  
Rather, heuristics will be required along with sub-optimal approximations to NP-complete problem 
formulations.  In such cases, questions arise regarding how much modeling error is being introduced, and 
how much performance given up, in order to achieve a computationally reasonable instantiation.  An 
“optimal in theory” problem formulation may give rise to a “sub-optimal in practice” solution due to cost and 
latency constraints.  In this connection, it is useful to note that algorithms are available that can adjust to the 
available time: increased reliance on heuristics when time is short; but moving along the scale of increasing 
fidelity and optimization as time constraints are relaxed39,39. 
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